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Abstract. We have used the linear muffin-tin orbital method, without geometrical approx-
imations, to calculate the electronic structure of LiC6. Using our self-consistent solution, we have
calculated the anisotropic frequency-dependent dielectric function and the reflectivity spectrum.
The calculated reflectivity spectrum is in good agreement with the experimental data.

1. Introduction

Graphite is known to have many technological applications and has been the subject of
intensive research both theoretically as well as experimentally. Hexagonal graphite has a
c/a axial ratio of 2.7259 which gives rise to highly anisotropic electronic properties. Due
to this circumstance graphite is often considered as a prototype system for layered crystals,
showing essentially a two-dimensional behaviour. The carbon atoms within the basal plane
are bound together by strong covalentσ -bonds (the nearest-neighbour distance is 1.42Å)
while atoms in adjacent layers are weakly bound by van der Waals bonds. As a result it
is easy to intercalate foreign atoms (mainly alkali metals) or molecules (e.g. AlCl3) into
graphite. The intercalation compounds formed in this way have many interesting properties
[1], which arise from changes in the electronic structure due to the intercalation. These
compounds are of particular interest due to their possible technological applications [2].

When graphite intercalated compounds (GIC) are formed, an exchange of electrons
takes place between the intercalant layers and those of the host, generating ionic bonding
between layers and creating highly mobile charge carriers in the graphite layers. These
charge-transfer effects have been studied experimentally for sulphuric acid–graphite using
neutron diffraction [3], and for LiC6 [4], monolayer graphite on a NbC crystal [5] and
the alkali GICs [6] using angle-resolved photoelectron spectroscopy. The low-temperature
specific heat of some GICs has been measured and the electronic density of states at the
Fermi level, DOS(EF ), is found to be about 30 times larger than that of graphite [7].
LiC6 has been studied most extensively, by means of measurements of the specific heat [8],
metallic reflection [9], anisotropic conductivity [9], and NMR [10] and Raman spectroscopy
[11]. Recently the Fermi surface of AlCl3–graphite has been studied using de Haas–van
Alphen [12] experiments.

There are not very many electronic structure calculations available in the literature for the
GICs. Extended Ḧuckel calculations for KC8 have been carried out by Inoshita, Nakao and
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Kamimura [13]. The charge transfer in sulphuric acid–graphite was studied by means of first-
principles total-energy electronic structure calculations [3]. These calculations were done by
means ofab initio pseudopotentials within the LDA formalism using the Hedin–Lundqvist
exchange–correlation potential. The calculations were made tractable by considering the
changes induced in the graphite layers solely as a result of charge transfer. No energy
bands were reported. The photoelectron spectroscopy data have been explained using a
modified version of the combined discrete variational method [14] of Painter and Ellis [15].
Although this is not a self-consistent calculation, the agreement with the experimental data
is good, and to this day this approach has remained the basic theoretical method used for
comparison with experiments. The Fermi surface of the GICs has been calculated using
an interpolation scheme based on the LCAO method [14–16] as well as the simpler tight-
binding (TB) model [17].

The understanding of the GICs rests heavily on the idea that it is theπ -bands of each 2D
layer of graphite which are being partially emptied/filled in donor/acceptor compounds in the
intercalation process. The band calculation of Holzwarth et al [14] seems to lend credence
to this idea and suggests that the 2D rigid-band model of intercalation provides a good
zeroth-order approximation to the Fermi level properties of LiC6. Modifications caused by
band folding due to the periodic perturbation of the intercalation layers and caused by the
interlayer intercalations of the graphite layer leading toc-axis dispersion are very significant.
In the present work we present anab initio electronic structure calculation for LiC6 using
the full-potential linear muffin-tin-orbital (FPLMTO) method with the purpose of throwing
more light on the validity of the rigid-band model and the role of interlayer intercalations in
explaining the electronic properties of LiC6. Comparison with our own earlier calculation
on graphite [18] helps to highlight the role of the intercalation with Li.

2. Details of the calculations

In order to study the electronic structure of LiC6 we have used the FPLMTO method [19].
The calculations were based on the local-density approximation and we used the Hedin–
Lundqvist [20] parametrization for the exchange and correlation potential. Basis functions,
electron densities, and potentials were calculated without any geometrical approximation
[19]. These quantities were expanded in combinations of spherical harmonic functions
(with a cut-off `max = 8) inside non-overlapping spheres surrounding the atomic sites
(muffin-tin spheres) and in a Fourier series in the interstitial region. The muffin-tin sphere
occupied approximately 50% of the unit-cell volume. The radial basis functions within
the muffin-tin spheres are linear combinations of radial wave functions and their energy
derivatives, computed at energies appropriate to their site, and principal as well as orbital
atomic quantum numbers, whereas outside the muffin-tin spheres the basis functions are
combinations of Neuman or Hankel functions [21, 22]. For sampling the irreducible wedge
of the Brillouin zone we used the special-k-point method [23]. In order to speed up the
convergence we have associated each calculated eigenvalue with a Gaussian broadening of
width 10 mRyd.

2.1. Calculation of the dielectric function

The (q = 0) dielectric function was calculated in the momentum representation, which
requires matrix elements of the momentum,p, connecting occupied and unoccupied eigen-
states. To be specific, the imaginary part of the dielectric function,ε2(ω) ≡ Im ε(q = 0, ω),
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was calculated from [24]

ε
ij

2 (ω) =
4π2e2

�m2ω2

∑
knn′σ

〈knσ |pi |kn′σ 〉〈kn′σ |pj |knσ 〉fkn(1− fkn′)δ(ekn′ − ekn − h̄ω). (1)

In equation (1),e is the electron charge,m its mass,� is the crystal volume andfkn is the
Fermi distribution. Moreover,|knσ 〉 is the crystal wave function corresponding to thenth
eigenvalue with crystal momentumk and spinσ . With our spherical wave basis functions,
the matrix elements of the momentum operator can be conveniently calculated in spherical
coordinates and for this reason the momentum is written asp = ∑µ e

∗
µpµ [25], whereµ

is −1, 0 or 1, andp−1 = (1/
√

2)(px − ipy), p0 = pz andp1 = (−1/
√

2)(px + ipy) [26].
The evaluation of the matrix elements in equation (1) is done over the muffin-tin region

and the interstitial region separately. The integration over the muffin-tin spheres is done in
a way similar to what Khan [27] and Gasche [24] did in their calculations using the atomic
sphere approximation (ASA). A full detailed description of the calculation of the matrix
elements will be presented elsewhere [18].

Figure 1. The calculated energy band structure of LiC6 along the M0K symmetry directions.
The energy is in eV and the Fermi level(EF ) is set at zero energy.

The summation over the Brillouin zone in equation (1) is performed using linear
interpolation on a mesh of uniformly distributed points, i.e. the tetrahedron method. Matrix
elements, eigenvalues, and eigenvectors are calculated in the irreducible part of the Brillouin
zone. The correct symmetry for the dielectric constant was obtained by averaging the
calculated dielectric function. Finally, the real part of the dielectric function,ε1(ω), is
obtained fromε2(ω) using the Kramers–Kronig transformation:

ε1(ω) ≡ Re
(
ε(q = 0, ω)

) = 1+ 1

π

∫ ∞
0

dω′ ε2(ω
′)
( 1

ω′ − ω +
1

ω′ + ω
)
. (2)
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For a tetragonal or hexagonal structure we need to calculate two components of the
total dielectric function [27], corresponding to light polarized parallel and perpendicular to
the c-axis. In that case the totalε2 is given by

εtot2 (ω) = ε
‖
2(ω)+ 2ε⊥2 (ω)

3
(3)

whereε‖2(ω) andε⊥2 (ω) are the imaginary parts of the frequency-dependent dielectric function
for the light polarized parallel and perpendicular to thec-axis.

Table 1. Characteristic energy levels (in eV) at the0 point for graphite and LiC6 relative to
the Fermi energy.

Graphite LiC6

Symmetry label Experiment Theorya Experimentb Theoryc Theoryd

π∗ 0.0 0.0 −0.5 −1.3 −0.9,−1.7

σ2,3 −4.6b, 5.5e −3.04 −5.0g −5.9 −5.0

π1 −7.2b, −5.7f ,−6.6e −6.52 −9.3 −9.3 −9.1

π1 −8.1b, −8.5e −8.58

σ ∗2,3 — — −13.0 −13.3 −12.6,−11.9

σ ∗1 −14.9 −14.0

σ ∗1 , σ ∗2,3 −15.2 −15.4 −14.2

σ ∗1 −20.6b −19.44 −22.5 −21.8 −21.1

a Ahuja et al [18].
b Eberhardtet al [4].
c Holzwarthet al [14].
d Present calculation.
e Law et al [28].
f Bianconiet al [29].
g This value is misprinted in table 1 of reference [4]. If we read this value from the corresponding
figure, it is around 5.0 instead of 0.5.

3. Results and discussion

3.1. Band structure and the density of states

The band structure of LiC6 has been calculated and is plotted in figure 1 along the M0K
direction (i.e. forKz = 0). This band structure looks very similar to the one obtained by
Holzwarthet al [14] using a modified version of the combined discrete variational method
of Painter and Ellis [15]. However, these latter calculations were not self-consistent. One
can get a good idea of the energy bands of LiC6 from the graphite band structure by folding
the LiC6 BZ into the graphite BZ. Recall that the hexagonal unit cell of LiC6 is three times
the size of that of graphite. This has been explained very nicely by Holzwarthet al [14] for
the two-dimensional carbonπ -bands and we refer the reader to figure 4 of their article. This
is in agreement with our own band structure near0. Our π -bands are split at0 because
they are 3D bands and not 2D ones. To make this comparison more quantitative, we list in
table 1 values for some characteristic energy levels in LiC6. These are compared with the
calculation of Holzwarthet al [14] and experimental ARPEM data of Eberhardtet al [4].
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Good agreement is obtained for all cases except for theσ2,3- and π∗1 -bands which have
been found by measurement to be degenerate 0.5 eV belowEF . Our calculation places
the σ2,3-band at 5 eV belowEF while Holzwarthet al [14] put it at 6 eV belowEF . We
find theπ∗1 -band at−0.9 and−1.7 eV belowEF whereas Holzwarthet al [14] put it at
−1.3 eV. Our band structure shows clearly the splitting in theπ∗1 - and σ ∗2,3-bands. This
could be due to the fact that the FPLMTO method includes the interlayer scattering in the
graphite structure in a more efficient way than the calculations of Holzwarthet al [14].

Figure 2. Calculated total densities of states (DOS) for LiC6 and graphite. The Fermi level is
set at zero energy for graphite. For LiC6 it is marked by a vertical dotted line.

Graphite is semi-metallic with a very low density of states (DOS) atEF . These states
arise from the bands near the symmetry point K. In LiC6 the presence of Li raisesEF (by
contributing one conduction electron) thereby giving rise to a large DOS atEF . We have
plotted the DOS of LiC6 in figure 2. This DOS is close to the DOS that we have previously
calculated for graphite and shows 2D character. The major difference is the presence of a
small peak above the Fermi energy for LiC6. Moreover the Fermi energy is pushed to a
higher energy than for graphite, in order to accommodate the extra 2s electron from Li. This
picture of a direct transfer of the lithium electron into the graphite planes is further supported
by the fact that at the minimum of the DOS (belowEF ), the integrated number of electrons
is 24, i.e. 4 electrons/C atom, while atEF we have 25 electrons (one electron coming from
Li 2s). The DOS at the minimum is 0.031 states eV−1 which gives 0.0051 states eV−1/C
atom. This should be compared to 0.0033 states eV−1/C atom atEF in graphite. The
difference could well be explained by the folding of the BZ and hybridization. For LiC6

we obtain the DOS atEF , D(EF ) = 1.17 states eV−1, which should be compared with the
experimental value of 1.27 states eV−1 [8]. Holzwarthet al [14] obtained 1.44 states eV−1

which is somewhat larger than the experimental value. Using our value, the enhancement
factor (1+λ) comes out as 1.09 which is rather low and can thus help to explain why LiC6

is not a superconductor. In contrast, a number of other graphite intercalation compounds
have been found to be superconducting [13].
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Figure 3. ε2 calculated for LiC6. ‘Parallel’ refers to the electric field parallel to thec-axis and
‘Perpendicular’ refers to the electric field perpendicular to thec-axis.

Figure 4. ε1 calculated for LiC6. ‘Parallel’ refers to the electric field parallel to thec-axis and
‘Perpendicular’ refers to the electric field perpendicular to thec-axis.

3.2. The optical response

We have calculated the anisotropic dielectric functions using the formalism mentioned
earlier. In figure 3 we show the calculated behaviour of the interbandε

‖
2(ω) and ε⊥2 (ω)

functions. It is instructive to compare these with the corresponding results for graphite
[18]. Consider firstε⊥2 (ω). The two large peaks at around 1 and 4 eV for graphite show
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up as relative peaks for LiC6. However, the peak at 14 eV is present for both. As regards
ε
‖
2(ω), the double-peak structure at 10 and 14 eV for graphite can be compared with the

similar structure for LiC6 while the low-energy weak structures for graphite are not found
to be present for LiC6. In our earlier paper on graphite [18] we attempted to link the
various structures forε2(ω) to electronic transitions. This analysis will not be repeated
here. Using Kramers–Kronig (KK) relations, we have calculatedε1(ω). The results are
plotted in figure 4. Because of the inherent problems with KK relations theε1(ω) is less
accurate. Normally ifε2(ω) is available up to say 3 Ryd,ε1(ω) can only be relied upon up
to 1 Ryd or so. Unfortunately no optical data forε2(ω) are available.

Figure 5. The calculated and experimental reflectivity for LiC6. The experimental data are
taken from Basuet al [9].

Using our calculatedε1(ω) andε2(ω) we can calculate the reflectivity, and this is shown
in figure 5. Also shown are the experimental data of Basuet al [9]. As can be seen, the
agreement is good. The main difference is the location of the minimum, which is observed
experimentally at 2.8 eV while it appears at 3.2 eV in our calculations.

4. Conclusions

We have calculated the electronic structure of the simple lithium-intercalated graphite
compound LiC6 using the FPLMTO method. A number of energy band features as well
as structures in the DOS of LiC6 can be related to similar features of graphite, but with
the difference thatEF is pushed upwards to accommodate the one 2s electron of Li. Thus
LiC6 is not semi-metallic in character, in sharp contrast to graphite. Our calculations seem
to suggest that Li does not play a very significant role except as a donor of an electron to
the carbon network. A large discrepancy exists as regards theσ2,3-band when we compare
our eigenvalues with those deduced from the ARPEM data. The calculated interbandε(ω)

is similar to our previous calculation for graphite except that a low-energy structure is lost.
Unfortunately there are no experimental data available for LiC6. However, our calculated
reflectivity is in agreement with the experiment [9].
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